XFLR5 Values and Graph

Table $1.1 - XFLR5$ Values				
Parameter	Value	Unit		
Initial Mass	27016	kg		
$[X_{cog}, Y_{cog}, Z_{cog}]$	[-0.886, 0, -0.631]	m		
X _{np}	-1.862	m		
Density	1.225	$\frac{kg}{m^3}$		
Cruise Speed	180	<u>m</u> s		
MAC	2.59	m		
Span	30.54	m		
Ref Area	75.59	m^2		
$\begin{bmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{yx} & I_{yy} & I_{yz} \end{bmatrix} = \begin{bmatrix} 229042 & 0 & 264144 \\ 0 & 1444714 & 0 \end{bmatrix} \begin{bmatrix} kg.m^2 \\ kg.m^2 \end{bmatrix}$				
I_{zx} I_{zy} I_{zz} 264	144 0 1531691	$\left\lfloor kg.m^{2} ight floor$		

Aerodynamic Coefficients

There are 12 more graphs of the remaining coefficients in our report.

Control	Deflection (deg)		
Beta	-6, -3, 0, 3, 6		
Ailerons	-10, -5, 0, 5, 10		
Rudder	-6, -3, 0, 3, 6		
Elevator	-5, -3, 0, 3, 5		

Aerodynamic Coefficients

- PID Controllers for elevator, throttle, and aileron control.
- Saturation blocks to limit elevator deflection and throttle.
- Signal Builders to schedule desired gain.

Desired Angle Gain

Roll Controller

Roll Rate

Current Roll Angle

Gliding Flight

Control Surfaces	Deflection (deg)		
Elevator	-3.23		
Ailerons	0		
Rudder	0		
L/D = 30.1			

Initial Speed: 180 m/s Thrust: 0 N

Takeoff and Climb

Climb Rate: **2326 ft/min (709 m/min)**

Takeoff and Climb

Climb Thrust: 25,000 N

Elevator Deflection: 2 Degrees

Climb AoA: - 3 Degrees

Takeoff AoA Max: - 7.5 Degrees,

Excessive climb rate due to using maximum thrust during climb, and modelling limitations related to drag and stall.

Bank Angle: 25 degrees

Altitude deviation: +/- 40 ft (12 m)

Holding Pattern

- Phugoid motion is introduced from the roll
- Damps out during straight and phugoid returns during the rolls

Landing

Bank angle: 35 degrees

Landing

- Roll angle 35 degrees
- Modelled with step function
- Rolling introduces phugoid, but damps out during descent

Risk Assessment

Hazard	Assessment	Risk	Mitigation			
Pre Flight (testing, maintenance, simulation)						
Operational Cost	B2	Delayed project timeline	Clarified method on fund acquisition & allocation			
System Design	s) A4	A4 Hinder project timeline, and delivery	Controlled and designated resource -			
(Manufacturing Mishaps)			allocation. Supply chain			
Faulty component	B1	Fatal crash, death, serious environmental impact	Beforehand testing, and maintenance work			
Technology Limitation	B4	Not meeting the 2035 entry	Active RnD researchs, Mindful design			
In Flight (live operation and performance)						
Electrical, Fuel, & B1 Hydraulic issue	D1	Cause fatal crash or damage of the plane	Backup controls, separate power -			
	DI		systems, proper insulation			
Thermal (Fire) Issues	B3	Engine, Electrical, Mechanical -	Hybrids are usually less prone to fire, but -			
		parts damage causing crash	IMT-22 will utilise double wall bumpers			
Foreign Airplanes	E1	Mid air collision, causing fatal crash	Active tracking of other airplanes, Instrument ratings			
Descend Flight (landing, taxi)						
Possible Engine Loss	D1	Crash landing, Environmental damage, Fire	IMT-22 is designed to fly & land on single engine.			
	Di		Can glide up to 30.2 miles as well.			
Vibrational Wear out	B3	Structural and payload damage	Incorporate shock absorbers.			
			Distribute static loads if possible.			
Control Burnout	B4	Minor effects on landing performance	Provide engineered stall warning			
			Pilot stick shake feedback			
			Proper signs and warning alerts.			

	Risk Severity					
		Catastrophic (1)	Major (2)	Minor (3)	Negligible (4)	
Risk	Frequent (A)	A1	A2	A3	A4	
Probability	Probable (B)	B1	B2	B3	B4	
	Improbable (E)	E1	E2	E3	E4	

Summary

- IMT-22 flies as specified in the preliminary design
- Take off in about 2500 ft
- Has a 1200 nautical mile range
- Reduced fuel consumption by 27% compared to current turboprop competitors

Limitations:

- Viscous effects. XFLR limitation → L & D affected, Viscous drag modelling.
- MATLAB \rightarrow Stall prediction, and compressibility.